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we can set it accurately at a distance from the centre equal to the
eccentricity e.

(b) The pediometer is graduated from zero to unity, starting from
the point A.

(c) For the revolving bar, we take a point on the side of the roller,
at an unit distance from the centre. Starting from that point, we
graduate towards the other side over the centre. Then, the reading
of the point I} (where the pediometer intersects the bar perpendicularly)
gives directly the value of

I —ecos B,
‘onzequently, if we compute M, such that
M, = E—¢ggain K,

we can get readily the correction for the value of E so found, by the
following expression,
M- M,

R
1 —¢ooa K

or (M — M,) divided by the reading of the point D,

AE =

Kyoto Untversify Observalory :
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Some Remarks on the Theory of Radiative Equilibrium in the Outer
Eﬂrferﬂ of the Starg (in reference to the work of Professor E. A.
By V. A, Ambarzumian and N. A, Kosirev,

§ 1. Professor K. A. Milne, in his very interestin * Radiative
Hquilibrium in the Outer Lavers of a Star,” %J{}ﬂilj:d by him in
1921 March [Mnm.hfy Notices of the R.AS., pp. 3{:: —375), derives the
following equation, which characterizes the state of radiative equili-
brium 1n the outer layers of stars, the generation of energy being absent,

20'(r) = J; ) ; L= y}“"“'ih + [ ""E_"f{-r y) (1}

In the above equation

- j o
]

where ¢ iz the height of the layer (the zero-point is taken on the
surface), p the density, and k the coefficient of the absorption of the
rays, which are going along the normal in the layer to be examined.

Also,
C(r) = LE{WH () = Bi7) ‘ . (2)
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210 Mesars, V. A, Ambarzumian and N, 4. Kosirep, LXXXVIL 3,

where B(r) represents the intensity of the radiation of an absolutely
black body at the temperature of the given layer, this intensity being
expreazed by the law of Stefan. Solving the equation (1), we obtain
the expression of the function C'{7), and consequently alzo the relation
between the temperature and 7. meaﬂﬂur‘}inine tries to find the
solution of the equation (1) by means of the method of successive
approximation. He assumes the first approximation to be

Ci{r) = a+ 2br,

which corresponds to the distribution of temperature in layers in-
finitely removed from the surface. He Ht;}:m at the second approxzima-
tion, considering () to be clearly expressed by the following formula :-—

('(r) = Bir) = a+ 2br + de (b — a —br) + MHar + arﬂ;j %:ﬂy (3)

thus assuming the above expression for an approximate solution of the
equation (1), But in this question Profesgor Milne commits an error,
az this equation has only one solution identically equal to zero,

Firi=Bir)=0 . . . . {4)

This indicates that radiative equilibrium without the generation of
energy cannot talke place if the intensity of radiation differs from zero.

In order to prove the relation (4), we shall show first that the
solutions of the equation (1) will be at the same time the solutions of
the following homogeneous integral equation

= 3| Bilz—¢|Ba . . . (s)
i
where we adopt the notation
Fa= E
Biz = J A2
F o

Thiz will be the case if the equation (5) follows from equation (1),
which we are about to prove. Adding to and subtracting from the
right-hand side of the equation the quantity

Cir) f ’idy,

we find

; e — C(r O — y) — C i
s Ju "{Tﬂg erndy - L | y;, sy + ) f ?-;-:Ey

Moreover we see that

© (r —
) - fotr+ gudp ana S0 = 8 [etr ~ yuip.

¥
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By these relations the subintegral functions in equation (6) are trans-

- formed into
Cl{r + y; — Cl7} _ '-'13(1' ; E‘H};: = j:ﬂ"f-‘.l‘ + gl
e e ey 1
Clr y; Cir) .. _‘5{"" . W"}'.; = - L Clr — ypuddp
(W o A0
%;} - —Eff?yﬁ}[—w N .!i:yﬂfff_ymdﬁ

gince from the first of the equations (2) it follows that C{o) = o, Suhb-
stituting in equation (6) the relations thus obtained, we find

1 T 1
IU{T} = fﬁ'ﬂiﬁfjﬂ O + Ei'}'-lr}"i# i !;I!?_j"tiyj; 'fr — y,.:.‘jdlp,.l;.

+ [Covy [P0t — yurin (0

The second term of the right-hand side of the equation iz a double integral
extended over the rectangle (0 p< 1, 0<y<7) in the plane yu; the
third member is a double mntegral with the same subintegral funetion,
this integral being extended over a region which is limited by one side
of the former rectangle and by 7 = yu. Thus we may replace these
two integrals by one, extended over a new region composed of the two
former. Altering the order of integration, equation (7) is transformed
into .
1]

1 -1
20'(r) = f s J C'(r + ypdevdy + | dp f' e (r — gy,
i 0 0
In the first integral, put

T+ yw = t; dy = 1fpdt;
and in the second, |||I
T—yp = i; dy = — 1/udt.
We obtain
¢

[l

1- = r1 T T
20'(7) — L s f clo"— d+ [ | C—a

T F—i

Putting
e = £ =~

and, altering the order of integration, we find

g~

20'(r) = feﬂfﬂ’{;] ;”:Iﬁ J:}rdsfﬂ‘{s}

but, az according to our notation,

E'_‘{T—I}E
i€,

o g—(r— 0k

Wi morfim | piem | S Rl B [
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we finally obtain
F
B(r) = }| Bilr— Bt . . . (8)
o
because Bit) = C'(t), which we had to prove. Now let us prove the
statement that the homogeneous integral equation has not any con-

tinuous solutions which are not identically zero.
§ z. It 18 readily calculated that

%jmlﬂil-r-thﬂ=|—%{E"—rEi¢}| .. {9
i}

Let us show that in the whole region o= 7<0w we have

e e — 7Hir)=0 or eT=7Hir . . . (10
n fac

T — f etdf;  rRir = T[w?df = j; wgﬂ_ﬁdf

Az in both integrals the subintegral funetions are positive, and as the
second function differs from the first by the factor E:a; I, the inequality

is proved. N
Let us denote the positive function d{e— — 7Eir) by oy (r). We
may write

[ Bilr—ddt = i) =) .. (1)
i

where ¢, (7) is positive, as Ei |7 — #| is positive on the whole plane 8.
We form an infinite sequence of functions connected together by the
relation '

%J: Bilr—t|dunslthit = dalt) . . . (12)

All the functions of this sequence are positive since the kernel
Ei |7 — | and the function ¢,(7) are positive, Thus ¢,(7)>0. We had
dy(7) = 1 —aby(7), where ¢ (7) is & positive function, If we substitute.
this equation in (1z) we obtain, having in view (11},

‘#’a'{"'} = I —nlr) — {.lf's'[ﬂ
i) = R |7 — t] y(0)dt
i

is also & positive function. Continuing it, we obtain for ¢,(r) the

formula
$ul7) = T —[alr) £ dolr) + . . . +ul)]=0 . (13)

bolr) = “Bifr — g (0L

where

where
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Evidently the sequence of the functions $,(r) converges. In fact at
every value of 7 this sequence 1s monotonically decreasing, but all its
membera are still greater than zero. Let us denote the limit of this
geries by @{7). Let us prove that our sequence of functions uniformly
converges. Hor this purpose let us first show that out of it one may
extract a uniformly converging seriea.

Our sequence of functions satisfies the conditions which have been
formulated by Courant and Hilbert as sufficient to make possible the
cxtraction of & uniformly converging sequence* First of all 1t is
uniformly limited because all [$,(r)] <1. Becondly it is uniformly
continuous becanse

$ulr+ 1) = dalr) = 3] [Balr + 9 — ) = Bi|r — o] a0
= dhyy(Dhy(7 + 1) — P4(7)]

where the factor ¢h,,_,(F) s taken outside the sign of integration, according
to the theorem of the mean, Since all ¢, _,(f)<1 from the uniform
continuity of ¢,(7) there follows the uniform continuity of the whole
sequence ¢, (7). Thus the sequence ¢, (7) is uniformly limited and uni-
formly continuous, consequen ﬁ( we are able to extract from 1f, according
to the theorem of Courant and Hilbert, a uniformly converging sequence,
Tt 1s obvious that the limit of this partial sequence will be the same as
the limit of the whole sequence, viz. @(7). Let us show that the whole
sequence as well converges uniformly. In fact any sufficiently far
term of the whole sequence is enclosed between two terms ¢, and anH.l

of the partial sequence. Since for all the positive  we have
(D(r) = o) =6 (D7) = gy ()= - . (14)

g0 by virtue of the monotonity of the whole sequence for n, which is
enclosed between #g and gy, we have also

[pir) — alr)] = . . . - (15}
Thus the series of functions
"i-!'l{'r}* ‘#"E{T}:— SR ‘#"n{’-"]‘:

converges uniformly for all positive values 7. Consequently also the
sequence of functions :

1 — ylr), 1 — dhyl7), « v e 1 — (7),
converges uniformly for all the values 7. As
L — afr) = fy(7) + fulm) + . . .+ i)

the series (1) + dhy(7) + . . . converges uniformly, all 7 being positive.
Let us show that this series if multiplied }.?' Et'f'r — ¢ ad.m%ts an in-
tegration term by term in the whole interval, that means, if we put

() = fnlr) + dalm)+ . . . e lr) + .. . {Iﬁ]

* B, Courant und D, Hilbert, Methoden der Mathematischen Physik, I, pp. 39-41.
15
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then

o L] Le]

jﬂ Ei|r — | W(t)dt = fﬂ Ei |7 — o] hy(t)dt + L Eilr — t]a()dt+ . . . (17
The integral on the left indubitably exists, since ¥'(7) 13 continuous, and
iz imited, and Ei |v — ¢| is integrable from zero to infinity. In virtue

of the uniform convergence of the series (16), the integration term by
term iz possible between finite limits

J:E-i fr — ] Wyt = j:E-i{—r—ﬂa,bl{.:}:EHEE-#|1-—3|:,!-3{¢H¢+ S e

where b may be no matter how great, and therefore the left part will
differ no matter how little from

f: Ei|r — ¢ We)de ;

consequently also the right part will differ from the same integral no
matter how little and thus, by increasing & ™, will tend to it as a limit.
The poeaibility of an integration term by term of the series being

proved,
Ei|r —t| W) = Ea|r —tjbyt) + B |r — t]eha(t) + . . . (18)

we find the solution of the following integral equation :—
i (v) = plr) — ifﬂi [+ — ] b(t)dt . . (19)
in the form
dlr) = Wir) = h(n)+ ol + . . . i)+ ... (20)

1t 18 easy to convince oneself of this by substituting this series in (19)
and taking into consideration that

Jal7) = % L Ei |7 — t] by ().

Thus the equation {1g) has a thoroughly determinate solution ¥'{7).
But if the homogeneous equation

Bir) = %L Eilr — ¢ Bide . : . {z21)
should have a solution not identically equal to zero, then

L B{r)d, (r)dr

should be equal to zero, as, if we multiply (19) by B{7), we obtain
fiﬂI{T}B[-r}dxr = J.; d(r)Bl7)dr — &I{l B{r}:ﬂq-fﬂi{-r — t| p(t)dt (z2)
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whenee, taking into consideration {21) and altering the order of integra-
tion, we obtain

[ B = [ $mBmar— [ goBna - o . ()

Thus the funections B{r) and i,(7) must be orthogonal. As iy(r) is
positive, the function B(7) must have a negative value (and therefore
without physical significance). Let us form a new continuous posi-
tive function y(r), which differs from () in those regions where
B(r) is negative, x(v)<y(7), and in other regions y(v) = :E (r). Itis
obvions that this fuur-tmn does not satisfy the condition of ortho-
gonality of

L "y B(rYdr = o

Meanwhile the equation
x(r) = $r) =} Bilr — | (o

has a thoroughly determinate solution. Therefore in case there exists a
solution (z1) which cannot be identically equal to zero, the condition of
orthogonality should take place, as it may be shown analogically to the
above mentioned.

Thus, assuming the existence of & solution of the equation (21)
which eannot be identically equal to zero, we have come to a contra-
dietion. Such a solution does not exist, consequently there does not
exist any continuous solution (1) different from zero.

Therefore the method used by Professor Milne is not applicable in
this case.

Micrometrical Measures of Double Stars (2150 Series).
By Rev. T. E. Espin and W. Milburn.

The Micrometrical Measures are given as in previous lists, those
marked K being made with the z4-inch and the ones marked M with
the 17}-inch. The asterisk attached to a star in Column 1 denotes that

additional information is given in the notes,

1 TN

P e —
Wame. R.A. Decl,  F. o, Mags,  HNits, 1‘;:@‘1‘
h L] a & =] &
Eapin 312 o 129 <34 35 2370 247 o35 99 3 -283 E
h Baz 207 34 I4 I3TI 1944 Qo gz 2 +ogo E
Espin 314 gorh 28 41 20002 703 GO Igo 2 gfe M
g2y
M 184 % 378 63 390 2384 279 1005 120 3 -oo5 M BC

63y 697 A=1I1ce 2 -oop MARB
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